Package index
-
import_flair()
- Wrapper for the Flair Python Library
-
flair_data()
- Import flair.data Module
-
flair_datasets()
- Access the flair_datasets Module from Flair
-
flair_data.Sentence()
- Create a Flair Sentence
-
flair_embeddings()
- Initialization of Flair Embeddings Modules
-
flair_embeddings.FlairEmbeddings()
- Initializing a Class for Flair's Forward and Backward Embeddings
-
flair_embeddings.TransformerDocumentEmbeddings()
- Initializing a Class for TransformerDocumentEmbeddings
-
flair_embeddings.TransformerWordEmbeddings()
- Initializing a Class for TransformerWordEmbeddings
-
flair_embeddings.WordEmbeddings()
- Initializing a Class for Flair WordEmbeddings Class
-
flair_embeddings.StackedEmbeddings()
- Initializing a Class for StackedEmbeddings
-
flair_nn()
- Import Flair's Neural Network Module
-
flair_nn.Classifier()
- Initializing a Class for Flair Classifier
-
flair_trainers()
- Import flair.trainers Module in R
-
flair_splitter()
- Import flair.splitter Module in R
-
flair_splitter.SegtokSentenceSplitter()
- Segtok Sentence Splitter
-
flair_models()
- Import the flair.models Python module
-
flair_models.TextClassifier()
- Retrieve TextClassifier from flair.models
-
flair_models.Sequencetagger()
- Access Flair's SequenceTagger
-
predict_label()
- Predict Text Label Using Flair Classifier
-
process_embeddings()
- Process Token Embeddings from Flair Sentence Object
-
flair_device()
- Set Flair Device
-
highlight_text()
- Highlight Entities with Specified Colors and Tag
-
map_entities()
- Create Mapping for NER Highlighting
-
embeddings_to_matrix()
- Convert Embeddings to Matrix
-
clear_flair_cache()
- Clear Flair Cache
-
show_flair_cache()
- Show Flair Cache Preloaed flair's Directory
-
uninstall_python_package()
- Uninstall a Python Package
-
install_python_package()
- Install a Specific Python Package and Return Its Version
-
get_tagger_tags()
- Extract Model Tags
-
load_tagger_ner()
- Load and Configure NER Tagger
-
load_tagger_pos()
- Load POS (Part-of-Speech) Tagger Model
-
get_entities()
- Extract Named Entities from Texts with Batch Processing
-
get_pos()
- Tagging Part-of-Speech Tagging with Flair Models
-
cc_muller
- Training Data from : The Temporal Focus of Campaign Communication (2020 JOP)
-
gs_score
- Training Data from : When Do Politicians Grandstand? Measuring Message Politics in Committee Hearings (2021 JOP)
-
hatespeech_zh_tw
- Training Data from : Political Hate Speech Detection and Lexicon Building: A Study in Taiwan (IEEE Explore 2022)
-
de_immigration
- German Bundestag Immigration Debate Data
-
uk_immigration
- UK House of Commons Immigration Debate Data
-
statements
- Sampled Grandstanding Text