Skip to content

This function provides an interface for R users to access and utilize the flair.embeddings module from the Flair NLP library. Flair's embedding functionalities offer various state-of-the-art embeddings crucial for natural language processing tasks. By using this function, R users can seamlessly incorporate these advanced embeddings into their NLP workflows without delving deep into Python. Essentially, this function acts as a bridge between R's ecosystem and Flair's rich embedding capabilities.

Usage

flair_embeddings()

Value

The flair.embeddings module from Flair.

Details

This function allows R users to access the following Flair embeddings modules:

FlairEmbeddings

Contextual string embeddings capturing latent syntactic-semantic information beyond standard word embeddings.

WordEmbeddings

Classic word embeddings like GloVe or FastText.

TransformerWordEmbeddings

Word embeddings from transformer models such as BERT, RoBERTa, etc.

TransformerDocumentEmbeddings

Transformer-based embeddings for entire documents or sentences.

StackedEmbeddings

Combines multiple embeddings for a richer representation.

DocumentPoolEmbeddings

Provides a single embedding vector for an entire document based on the chosen operation mode (mean, max, etc.).

BytePairEmbeddings

Embeddings based on the Byte-Pair Encoding (BPE) mechanism used in subword tokenization.

ELMoEmbeddings

Deep contextual embeddings derived from the internal state of a pretrained bidirectional LSTM.

Each embedding type offers unique features suitable for various NLP tasks. By understanding their differences and capabilities, R users can select the appropriate embeddings to enhance their NLP models.

References

In Python's Flair library:

from flair.embeddings import * 

Examples

if (FALSE) { # \dontrun{
library(flaiR)
# Initialize FlairEmbeddings
FlairEmbeddings <- flair_embeddings()$FlairEmbeddings
embedding <- FlairEmbeddings('news-forward')
} # }

if (FALSE) { # \dontrun{
# Initialize WordEmbeddings
WordEmbeddings <- flair_embeddings()$WordEmbeddings
embedding <- WordEmbeddings('glove')
} # }

if (FALSE) { # \dontrun{
# Initialize TransformerWordEmbeddings
TransformerWordEmbeddings <- flair_embeddings()$TransformerWordEmbeddings
embedding <- TransformerWordEmbeddings('bert-base-uncased')
} # }

if (FALSE) { # \dontrun{
# Initialize TransformerDocumentEmbeddings
TransformerDocumentEmbeddings <- flair_embeddings()$TransformerDocumentEmbeddings
embedding <- TransformerDocumentEmbeddings('bert-base-uncased')
} # }

if (FALSE) { # \dontrun{
# Initialize StackedEmbeddings
StackedEmbeddings <- flair_embeddings()$StackedEmbeddings
WordEmbeddings <-  flair_embeddings()$WordEmbeddings
FlairEmbeddings <-  flair_embeddings()$FlairEmbeddings

stacked_embeddings <- StackedEmbeddings(
                                       list(WordEmbeddings('glove'),
                                            FlairEmbeddings('news-forward'),
                                            FlairEmbeddings('news-backward')
                                            )
                                       )
} # }

if (FALSE) { # \dontrun{
# Initialize DocumentPoolEmbeddings
DocumentPoolEmbeddings <- flair_embeddings()$DocumentPoolEmbeddings
WordEmbeddings <- flair_embeddings()$WordEmbeddings
doc_embeddings <- DocumentPoolEmbeddings(list(WordEmbeddings('glove')))
} # }